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ABSTRACT 

E is a Banach lattice that is weakly sequentially complete and has a weak unit u. 
TLf .  = 05 means that the infimum of If, - 05 1 and u converges strongly to zero. 
T is a positive contraction operator on E and A, = (1/n)(l + T + . • • + T" ~). 
Without an additional assumption on E, the "truncated limit" TL A, f  need not 
exist for f in E. This limit exists for each f if E satisfies the following additional 
assumption (C): For every f in E+ and for every number a > 0, there is a 
number/3 =/3(f, u )  such that if g is in E+, IIg [I--< 1, o_-< f '<- f and IIf'll > o, then 
II/'+ gll-->llgll+/3. 

We consider Banach lattices E that are weakly sequentially complete (Condi- 

tion (B) below) and have a weak unit u (Condition (A)), i.e., an element u E E+ 

such that Ill ^ u = 0 implies f = 0. If f, are positive, ~b ~ E+ is called the (weak) 

truncated limit of f., if for each positive integer k, f ,  ^ ku converges (weakly) to 

~bk and ~ 1' 4x We then write 4~ = (W)TL/ , .  There is sequential compactness 

for WTL, which can be used in ergodic theory instead of Banach limits and other 

non-constructive arguments. Weak truncated limits were (implicitly) introduced 

in [1] and applied to superadditive ergodic theory. They were studied in [3], in 

the context of Banach lattices. A related notion was considered by Brooks and 

Chacon [4]; see also Ghoussoub and Steele [11]. If E = L~ then any norm 

bounded positive sequence has a subsequence that decomposes into g, and h, in 

L~ such that g. converges weakly, say to ok, and the h, 's have disjoint supports. 

Then the limit function ~b has the desired properties of a weak truncated limit. 

However,  in Banach lattices that we consider this decomposition may fail; see [3] 

for a discussion. 
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In a recent paper [3[ we applied truncated limits to the problem of existence of 

positive elements invariant under positive operators. Here we study the limiting 

behaviour of averages 

A . : I ( I + T + - . .  +T"-') 
n 

of a positive contraction T. If E is L1 of a probability space then A,[, f ELI ,  
does not converge in L,, or, as shown by Chacon [6], almost everywhere. 

However, Krengel [13] proved that A,]' converges in probability; see also [2]. In 

L,, f, converges in probability to ~ if and only if TLf, = ~b [2]. This raises the 

natural question whether there are ergodic theorems for TL convergence in 

Banach lattices. We show here by an example that the conditions (A) and (B) are 

not sufficient. Additional assumptions are needed ensuring that if a positive 

function increases so does its norm. One such assumption is (C0: Ill + g II > IIg II 

whenever f, g E E+ and f ~  0. Under (C1) we prove that if 0 <= 4' = Tth then the 

(strong) limit of (Aft)^ ~b exists. The main theorem asserting the existence of 

the (strong) truncated limit of A,]:, jr E E+, is proved under ihe following 

condition (C), a "uniform" version of (C~). 

(C) For every f E E ÷  and for every number a > 0  there is a number 

/ 3 = / 3 ( f , a ) > 0  such that if g E E + ,  Ilgll=<l, O<-_f'<f and [If'll>a then 

Iif' + g[[>= lig[l+ fl. 

It is an open problem whether (C1) is sufficient for the existence of TL A,f. 

The paper is self-contained except for some basic facts about Banach lattices, 

for which we refer to [15] and for the classical mean ergodic theorem. In the first 
section we give the needed elements of the theory of truncated limits. The 

ergodic theorem is proved in the second section. 

I. Properties of truncated limits 

Let E be a Banach lattice. Our terminology will be that of the book 

Lindenstrauss-Tzafriri [15], to which we will refer by [LT]. First we will make 

only the following two assumptions (A) and (B): 

(A) There is an element u in E+ such that if f is in E+ and if u ^ f = 0, then 

f = 0. Such an element u is called a weak unit. 

(B) Every norm-bounded increasing sequence in E has a strong limit. 

Assumptions equivalent with (B) are: (B') E is weakly sequentially complete, 
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and also: (B") E contains no isomorphic copy of co ([LT], p. 34). (B) implies that 

E is order-continuous. Therefore, the assumption (A) that there is a weak unit is 

not a loss of generality if E is separable ([LT], p. 9). 

Since the condition (B) implies order-continuity, one has 

1.1. Every order interval [[, g] = {h : t =< h < g} is weakly compact ([LT], p. 

28). 

Norm convergence will be simply called convergence and denoted by --+. 

Weak convergence is -:->, and order convergence for monotone sequences is 

denoted by ~' and ~. 

1.2. Let ¢ E E÷. Then there is a linear bounded operator P = P~: E ~ E such 

that Pf = lim f ^ (n¢)  for each f E E+ (limit in strong topology). Then P is a 

band projection (on ,b), implying that IIPIl= < 1, P== P and PE is a sub Banach 

lattice of E. O = 1 - P is another band projection. 

1.3. A band projection Pu on a weak unit u is the identity, i.e., if f E E+, then 

f ^  n u ~ f .  

In other terms, a weak unit is necessarily a quasi-interiorpoint ([17], p. 96) or a 

topological unit. 

1.4. There exists a strictly positive element U in E* ,  i.e., a U such that f = 0 if 

U If[ = 0 ([LT], p. 25; if E is separable, this is very easy to prove). 

1.5. If f, in E÷ is such that f~-~ 0 and sup fn ~ E, then f, ~ 0. 

PROOF. If the conclusion fails, then passing to subsequences we can ssume 

that ]1/. II > e > 0 for all n and Y~ Uf~ < o0 for a strictly positive U in E* .  Let 
gn = V~=n/~, g = A~=I gn. Then g. ~ g implies that g, --+ g, hence Ugh ~ Ug. But 

Ug <Yk>=n Ufk implies that Ug =0 ,  hence g = 0. This contradicts IlgJl = 

lira II go II > 

Definition of truncated limits 

Let fn E E+, 4' E E+. Then TL/ .  = ¢ (the truncated limit of /n  is ~b) means 

that for a weak unit u, lim. (f, A ku)= 4~k exists for each k, and ¢bk 1' ¢. 

F o r / ,  in E, T L / ,  = TL f,+ - TL f ; ,  provided the truncated limits to the right 

exist. This definition is independent of the choice of the weak unit u (cf. 1.3). 

We define analogously the WTL's (weak truncated limits), requiring only that 

f. ^ ku-~ ¢k. 
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TL null sequences 

A sequence ([.) is called TL null if TL If, l=0 .  For this it suffices that 

I/.[A u -~0 (cf. 1.5). If E is L 1 of a measure space, then, as shown in [2], TL null 

sequences are exactly the sequences of functions that converge to zero in 

measure on sets of finite measure. 

Since the main theorem asserts TL convergence, it is of interest to observe 

that also in more general Banach lattices TL convergence implies convergence in 

measure on sets of finite measure. This follows from the following lemma, 

together with Theorem 1.b.14 [LT], which reduces the discussion to the L l case. 

1.6. LEMMA. Let f ,  E E, 49 ~ E. Then TL f, = 49 if  and only if g, = f ,  - 49 is 

TL-null .  

PROOF. We at first suppose that f,  E E +, 49 E E +. Assume that g, is TL-null. 

If, ^ ku -49  ^ kul<-_lf, - 4 9 1 ^  ku--;O.  

Hence f ,  ^ ku ~ 49k = 49 A ku ~ 49. Thus TL f, = 49. Conversely, if g, is not TL 

null, then there is a v E E + such that lim sup, Illg. l ^ ,  II = ,~ > 0. Find k0 
sufficiently large such that II v - ( v  ^ kou)ll < ,~/2. Then v = kou + v' with II v'll < 
a [2.  Hence I go l ^ o <-- I g. I^ kou + v' implies 

limsup II g. ^ kou 1[--> ,,/2 for each k ~ ko. 

We will show that this is a contradiction if TL f, = 49. In fact, choose k => ko such 

that [149 - 49~ 11< a/8 and 116 - 49 ^ ku [l< c~/8. Then 

If.--49[A ku <-_ If. ^ 2 k u - 4 9  A kU1+[49--49 ^ ku I 

implies that 

limsup I[ I/, - 49 [ A ku II <- II 492~ - 49 A ku It + II 49 - 49 ^ ku [I < 3 -~ < -~ a 

Thus TL If, - 49 [ = 0. Now consider [. and 49 in E without assuming positivity. 

By definition, TL [. = 49 if TL [,* = 49 + and TL ]', = 49-, and the converse is also 

true. Therefore it suffices to show that [ , - 4 9  is TL-null if and only if both 

[ + -  49+ and [ : -  49- are TL-null. This follows from 

[ f : - 4 9 + [ v [ f : - 4 9 - [ < [ f ,  - 49 I-< If.+- 49+1+ [ / : -  ¢-[.  

1.7. LEMMA. I f [ .  > O, WTL f ,  = 49. Let  P = P,  be the band projection on 49 and 

let 0 = O,  = I - P (cf. 1.2). Then WTL (Pf , )  = 49 and Qf.  is TL-null .  
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PROOF. Let L A (ku ) -~bk ,  ~bk 1' ~b. Since P~bk = ~b~, we also have that 

P(f ,  ^ ku ) -~  ckk. Hence the intermediate sequence (P/,)A ku also converges 

weakly to qSk, and therefore (Qf,)A k u - ~ 0 .  

The most useful result of this section is the sequential compactness for WTL. 

It suffices to state it for positive sequences. 

1.8. PROPOSITION. If fn >-- 0 and sup Ill, II = M < 0% then there is a subsequence 

(]:,) such that WTLf, ,  = ~b exists. I f  [, is not a TL-null  sequence, then this 

subsequence can be chosen so that c~ # O. 

PROOF. Apply 1.1 to intervals [0, ku] for k = 1 , 2 , . . . .  The sequence f. 

obtained by diagonal procedure will be such that f,, A ku --~ ~bk for each k, and 

(~k ~ (~k+l. Since II Sk II --< M, ~b = lim 1' $~ U E. 
Now if Ill-A U I~60, then passing to a subsequence we can ssume that 

Ill- ^ u II > a > 0 for all n. Then no subsequence f., A U can converge weakly to 

zero, because by 1.5 it would converge strongly to zero. 

1.9. PROPOSITION. Let f . ,  g. E E+, WTL/ .  = ~b, WTL g. = Y- 

(a) I f  WTL (f, + g,) = ~ exists then ~b = 4~ + 3". 

(b) I f  T : E ~ E is a positive linear operator and Tf, = g, then T4~ <= 3". 

PROOF. (a) Since for each k one has 

(f. + g . ) A  ku <-_([. ^ k u ) + ( g .  ^ ku),  

the inequality ~ < 4) + 3' is clear. In the opposite direction use the inequality 

(f. + g,)A 2ku ->_ft, ^ k u ) + ( g ,  ^ ku). 

Let [. A ku --~ 49k, g. A ku -~ 3'~ and (/, + g,) A ku -~ ~b~. Then the last inequality 

implies that qJ:~ => ~bk + 3'~. On letting k ~ ~, we have q, _-> 4' + 3'- 
(b) Let ~bk and 3'~ be as before. Given k and e > 0, find m so large that 

II Tku - (Zku)  A (mu)ll < ,. 

Then 

T~bk = T[weak lim ([, A ku)] 

= weak lim T([, A ku)  

_-< weak lim 7"[. ^ Tku 

implies that 
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TOk ----< weak lira Tf. ^ mu + r 

= y,. + r, 

with l] r H < •. Since • is arbitrary, it follows that T6 --< 3'. [] 

Finally we need a simple result involving strong limits of truncated sequences. 

If ~b E E+ then we write 

TL~/.  = A 

to mean that lim. f. ^ k4, = Ak exists for each k and that M ~' )t E E+. Let P~ be 

the band projection on ~b. 

1.10. LEMMA. TL~f.  = A if and only if T L P ,  f .=A. 

PROOF. First observe that if lim. g. = g in E+ then lim. (g. ^ v) = g ^ v for 

any v E E+ (continuity of lattice operations in strong topology). To prove the 

"only if" part, assume that f.  ^ k~b ---* & and )tk 1' A. Then (P~f.) ^ v converges 

strongly to )t ^ v for any v E 15+. In fact, given • > 0 we can find ko such that 

]lA - A ol[ < ~ and such that I] v ^ (kock)-  P,v]l < e. Then 

P ~ f . ^ v = f . ^ P , v = f . a ( v A k o 4 ) ) + u .  whereO<=v.<-_P,v-vAkock 

and hence I] v. II < •. But f. ^ (v ^ koq~) = (f. a koch) ̂  v ~ )t~, ̂  v. Therefore 

limsup IIP, f. ^ v - A  ^ v II_-<limsup[llf. ^ (v ^ k0~b)- A ^ v I1+ ll~,. II] 

<HA~^v-A^vII+,<2•. 

The proof of the "if" part is similar. [] 

2. The ergodic theorem for TL convergence 

As in Section 1, we assume that E is a Banach lattice satisfying (A) and (B). 

Let T : E  ~ E be a linear positive operator and let 

A , ( T )  = A,  = 1 ( 1 +  T + . . - +  T "-~) 
n 

be the Cesaro averages of the iterates of T. We investigate the existence of 

TL(A, f )  for f E E .  We assume that T is a contraction, i.e., IITII_- < 1. 

If E is L, of a probability space, f E E+, then A , f  need not converge almost 

everywhere or in norm, but A , f  converges in probability (Krengel [13]). In L ~ the 

convergence in probability is exactly t h e s t r o n g  TL convergence, but the 
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following simple example shows that the strong truncated limit of A, f  need not 

exist without an additional assumption on the lattice E. 

EXAMPLE. E is the space l~ of absolutely summable sequences with the 

following different norm: f = (fi; f , ,  f2 . . . .  ) E E, then 

[[f l l=max(f~J, i~[f i[  ). 

If (at ,  a2 . . . .  ) is any sequence of real numbers with 0_-< a~ _-< 1, then T defined as 

( 
T(fo;f,,f2 . . . .  ) =  \,=1 a,f~ ;O,f,,f2 . . . .  

is a positive linear contraction on E. Let f = (0; 1,0, 0 , . . .  ), then 

T"f = (a , ,0 ,0  . . . . .  0, 1 ,0 ,0 . . . ) ,  
n t i m e s  

A , f = ( l ~  a,, 1 . . . . .  1 , 0 , 0 , . . . )  
\ n  i : l  

and if the Cesaro averages of the a~'s diverge, then the truncated limit of Anf 
clearly does not exist. The lattice E satisfies (A) and (B), but what is wrong with 

E is that if, e.g., f = (1 ;0 ,0 ,0 , . . . )  and g = (0 ;1 ,0 ,0 , . . . ) ,  then IIf+ g l l = l l f l l -  
l tg]l>0.  

The following lemma guarantees the existence of subinvariant functions for T. 
For a more general version of this lemma see Lemma 2.2 in [3]. 

2.1. LEMMA. Let f ~ E÷. If for a sequence (n~), WTL A.~f = ~ then T4p <= 4O. If 
A , f  is not a TL-null sequence then there is a sequence (n~) such that WTL A,,f  = 

4o#0. 

PROOF. Since IIAof - TAnYll-°0 as i --> 0% we see that WTL TA,,f  = 4o. Then 

Proposition 1.9 shows that T4o _-< 4o. If Aft  is not TL-null then, by Proposition 

1.8, there is a subsequence (n,) such that WTLA,~f = ~b~ 0. 

2.2. LEMMA. Let ]] T]I <-_ 1. If & E E+, T& = 4o, f E E+, f <-_ 4o then Af t  
converges strongly. 

PROOF. This easily follows from the Kakutani-Yosida mean ergodic theorem 

(cf. [8], VIII 5.1 or [16], p. 442) since Aft<= & implies that (Aft) is weakly 
compact by (1.1). [] 

To proceed we need assumptions guaranteeing that if [ ,g  are non-zero 
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positive elements then Ill+ g 11> Hgll. This will eliminate examples of the type 

discussed above. The following assumption (C~) allows one to prove strong 

convergence of A , f  ^ 4,, if T4, -- 4' (Theorem 2.4). The main result, the existence 

of a strong truncated limit of A , f  (Theorem 2.8), is proved under the stronger 

assumption (C). 

(CO For every f, g ~ E+, if I l f l l / 0  then Ill + g [[ > Jig II. 

2.3. LEMMA. Assume (C,). Given 4' E E+ with T4' = 4' and a number a > O, 

there is a number ~r =o ' (4 , , c~)>0  such that if O<=f<=4' and Ilfll->_~ then 

lim II A , f  ll >-_ o'. 

PROOF. If for a g E E+, lim A,4' exists, denote this limit by ~. If the lemma is 

not true, then there is an invariant 4' E E+, an a > 0, and elements f, in E+ with 

f. =<6, lifo [1> ~, IlL I[-,0. 
Passing to a subsequence, we may assume that II)~ n --< e,, z e, <do. Let 

g. = V~=,fk, g =l im ~, g,. Then Ilg, l[_-> m hence [[gll->,~, but ]1~. I[_-< Z~E-~0,  

hence IIgll=0. Now 4, =a .4 ,  = a ° g + a . ( 4 , - g ) - - , ( 4 , - g ) .  It follows that 

I[4' [1 = 11(4' - g)ll =< 114' - g II. Since 0 =< g _-< 4', (c,)  implies that g -- 0, which is a 
contradiction. [] 

2.4. THEOREM. Let E satisfy (A), (B) and (C~), II T II-<- 1, 4~ E E+, T4' = 4', 

[ E E+. Then (Af t )  ^ 4' converges strongly. 

PROOF. Let gk = 4' ^ Aft. Then for a fixed k, A,gk is eventually dominated 

by g, in the sense that 

(2.4.1) lim IIA,gk - (A,gk) A g, II = O. 
n 

In fact, gk <=Aft and gk =<4, implies that A,gk =<A,4, =4,  and A,gk 

<-_ (A.a~f)^ 4,. But l lA°Ak f -Adl l - ,O  for a fixed k, and consequently, 
this gives (2.4.1). Since by Lemma 2.2 ~k = lira A,gk exists, we also have 

(2.4.2) [[gk - gk ^ g, 11--~ 0 (n ---~ oo). 

Now define for each k 

~k = l i m s u p  IIg° - (g .  ^ g~)ll. 

Then we have ak ~ 0 as k ~ oo. Indeed, supposing that lim sup ak > a > 0 we 

will obtain a contradiction. 
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We first show that given any k and no and • > 0 we can find n > no and two 

functions p, q E E+, p 5- ,;b, q <_- 4~ such that lip ]1 > a, IIq I[ < •, and 

(2.4.3) 

In fact we only have to take 

g, =g,~ + p - q .  

p = g , - ( g ,  ^ gk), 

q =gk - ( g .  Agk) 

for  a sufficiently large integer  n. Since 0 =< p < 4b and 0 < q < ~b, we also have 

that t7 = s t rongl im,~= A,p, ti = s t r o n g l i m , ~ A . q  exist and of course l iqil< e. 

By L e m m a  2.3 we have lip i( > o, where o- > 0 is a constant  that depends  only 

on ~ and a. Hence  from (2.4.3) we have 

g. =g~+p-q  

for  some n > no, ll/511 > o', }lq II < e. This gives a contradict ion as follows: let 

¢ > 0, 27:, •~ = • < oo. Assuming no, n~ , . . . ,  n~_~ already chosen,  choose n, > n~_j 

such that 

g. = g.,_, +,0, - ¢ 

where [1/5, II > ~, lie, [l < •,. Hence 

t l ~ . , - ~ . ,  ,11 = I1.~, - q, II > o - -  • , - ~ 0 .  

This is the desired contradict ion as we will now show that ~,, must converge  

strongly. In fact, since 

~., = ~.~+ q2<= ~ +  q2+ ,i3--< " "  

we see, by induction,  that ~,, + 21:2 q, is an increasing sequence.  But ~., < 4' and 

il2j:2EIi_-< YT:, • < ~ ,  which means that this sequence is also norm bounded.  

Hence  it converges strongly. Since Y.j=2 qj is also strongly convergent ,  this shows 

that ~,, is s trongly convergent .  

Consequent ly  we now know that 

l im2up IIg. - (g o ^ ~k)]l= ak ~ 0  as k --+ oo. 

To  cont inue the proof ,  let • > 0 be given. Find ko such that a~, < •. Now find no 

such that  n >= no implies that 
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and 

llg~,- (go ^ gO(l< E. 

Hence if n >-_ n,, then g. = ~ ,  + r. - s. with II ro II < e, II s. LL < e, where 

ro = go - ( g .  ^ & ) ,  

s° = g ~ , - ( g o  ^ g~,). 

Therefore,  if n, m > no, then 

H g. - g,,, ]1 -- II ro - rm - S, + s,~ [[ < 4e. 

Hence g, converges strongly. [] 

2.5. LEMMA. If  f.  E E+, sup,  IIf~ H = M < % W T L  f~ = 05, f.  ^ k05 -~ Ak, 

& '[ A, then A = 05. 

PROOF. Since u is a unit, A-<_05. In the opposite direction, let 

f, ^ k u - ~  05~ 1' ~b. Given E > 0, choose k such that [105- ~ I[ < E, and then 

choose m such that 

I I P ( k u ) - k u  ^ m05 1[< e, 

where P is the band projection on 05. Hence for all integers n, 

IIP(f, ^ k u ) - ( f ~  ^ k u ) ^  m0511< e 

and the expression inside II II is positive. Therefore  replacing in it (fo ^ ku) ^ m05 
by the bigger e lement  f,  ^ m05, we obtain that  for all n 

II(P(f. ^ k u ) - f .  ^ m05)+II< E. 

Now let n --) o~ ; i t  follows that I] (05- - Am )+ ]1 < e, and U (05 - A., )+ [[ < 2E. Therefore 

11(05 - a)+tl  < 2~, 05 <_- a.  [ ]  

From L e m m a  2.1 we know that for a sequence (n,), WTL (A, , f )  = 05 exists and 

T05 <_-05. We need, however,  T4~ = 05. This will be implied by the following 

assumption (C) on the Banach lattice E. 

(C) For every F in E+ and for every number  a > 0  there is a number  

f l = f l ( f , a ) > O  such that if g E E + ,  [[g[[=<l, O<=f'<-_f and {{f'[{>=a then 

[[g + f']l>[[gl[+ ~. 

2.6. LEMMA. Assume (A), (B) and (C). / f  05 = W T L A , , / ,  f E E+, then 

T05 = &. 
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PROOF. Suppose, without loss of generality, I l f l l~  1. Let 4, '= 4, - T4, and 

assume that 4 , ' / 0 .  Replacing (n,) by a further subsequence we may assume that 
weak lim~_~A,,/^ m4, = tom exists for each m = 1 , 2 , . . . .  By Lemma 2.5, 

t),, ]' 4,. Fix m so that II 4 , -0 , - I I  < II14,'11-Let 

ri = A , , f  ^ m4,, 

r'~ = ( T A . , f )  ^ m4,, 

Since I [A, , f -  TA.,f [[---, O, we have both 

(2.6.1) Ilri-r;ll--'O and 

s~ = A , J : - r ; ,  

s', = T A , , f  - r'~. 

IIs, - s ' , l l - - , 0 .  

Now T A , , f  = Tri + Ts, = r'~ + s'~. Since T4, =< 4,, we have that Tri <= m4,. This 

means that 0_- < Tr; <= r'; and Ts; = s';+ (r '~-Try) with both summands positive. 

We have, by (2.6.1), that r';--~ 0,,. Since r; -~ 0,,, and hence Tr; -~ T$,,,  we have 

that r ' , -  Tri ~ ~,. - T4,,,. But 

which implies that 

~. ,  - TtO., = 4, - T4 ,  + (4,. .  - 4 , ) -  T(q ,m - 4 , )  

= 4 , ' +  ( ~ , .  - 4 , )  - T(~O, .  - 4 , ) ,  

IIq, m - T 0 . 1 1 e  1[4,'11- 2114'm - 6 II ~ ~ll4,'ll- 

T h e r e f o r e  lira inf,~ !1 r; - rr, II > ~114,'11. Le t  /3 =/3 (m4,, Ill 4,'lJ), as g iven  in (C). 
Then we see that IlZs, II = IIs ' ,+(r:-rr ,)l l>= IIs:ll+/3 for all sufficiently large i. 

This is a contradiction, since II T 11 --< I and  since II s, - s:ll--, 0. Hence 4,' = 0. [] 

2.7. LEMMA. A s s u m e  (A), (B) and (C). / / ( n i )  and (m;) are two sequences 

such that WTL A , f  = 4, and WTL Amff = O then 4, = O. 

PROOF. We know that A f t  ^ k4, converges strongly, say, to 4,k. Then, by 

Lemma 2.5, applied to the sequence (n~), we see that 4,k 1' 4,. 
It is again convenient to use the notation TL, ,  defined before Lemma 1.10. 

We have T L ,  A f f  = 4,. Hence, by Lemma 1.10, this implies T L P ~ A f f = 4 , .  Then 

W T L P ,  A , f = 4 ,  and hence W T L P ,  A , , f=4 , .  But also W T L A , . ; f = ~ .  Since 

P~A,,;f<=A,,ff we see that 4, _--< ~b. By symmetry, ~b =< 4)- [] 

We now state the main theorem of the paper. 

2.8. THEOREM. A s s u m e  that E satisfies (A), (B) and (C). Let  f ~ E+. Then the 

strong truncated limit TL A , f  = 4) exists and T4, = 4,. 

PROOF. Let 4 , = W T L A J  for a subsequence (n;). We know that 
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TL P~A.f = ~ exists. By compactness of A,f  for WTL and Lemma 2.7 we know 

that every subsequence A,f has a further subsequence with weak truncated limit 

equal to ~b. Let O = 1 - P~. Then every subsequence of OA,fcontains a further 

subsequence with strong truncated limit equal to zero (Lemma 1.7). We show 

that this implies TL OA,f = 0. Otherwise there is a subsequence (mj) such that 

I[(OA,,~f) ̂  u II > E > 0. Then no further subsequence of QA,,jf can have strong 

truncated limit zero. Since A.f=P~,A~f+QA~f and TLP, A~f=ck and 

TL OA,f = 0, we see easily that TL A.f = &. [] 

2.9. EXAMPLE. In the case of an Orlicz space L ,  = LM (X, .~,/z), where p, is a 

finite non-atomic measure, the condition (C) is equivalent to the condition A2. 

Although this is rather straightforward to see, we give a complete proof, using 

the notation and some of the basic results in the book Convex Functions and 
Orlicz Spaces (Groningen, 1961) by Krasnosel'skii and Rutickii. Let M(u)= 
f~p(t)dt, u >=0, where p(t) is defined for t->_0, right continuous and non- 

decreasing, such that p(0) = 0, p(t) > 0 if t > 0 and p(t )~ ~ as t ~ ~. Note that 

M(u+v)>=M(u)+M(v) for all u, v _>-0. 

The set LM consists of all functions f : X  ~ R such that 

f M ( I [ f [ )  < ~  for some number s >0 .  

This becomes a Banach space with the norm 

A formulation of the A2 condition is that 

K(r) up(u) = s u p . . . < ~  for s o m e r > O .  

Of course this is the case if and only if K ( r ) < ~  for all r >0 .  Note that 

sup,>o K(r) need not be finite. If M satisfies A2 then 

M(,tu)<=,~K~')M(u) w h e n e v e r 0 < r = < u  and l < , t .  

Hence, in this case, f M O  Ifl)< ~ for some • > 0  if and only if fM(X [ f l ) < ~  

for all h > 0. If A2 is satisfied then it is easy to see that fM(~ If I) is a continuous 
function of h. Hence, in particular, 

for all f ~ LM. 
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We now note the following uniform continuity properties of this function. 

2.10. LEMMA. If A2 is satisfied then for each E > 0 there is a 8 > 0 such that if 

f>-_O with fM(f )<=l  then f M ( ( l + 8 ) f ) < = l + e .  

PROOV. First choose r > 0 such that M(2r)tz (X) < ½ E. Then choose 8, 0 < 8 < 

1 such that (1 + 8)K(')< 1 +½E. Hence if A ={x If(x)_- > r}, B = {x I f (x)< r} and 
1~A_-<1+8 then 

f M ( h f ) =  fA M(Af)+ fB M(Af)--< aK"'fA M(f)+ M(2r)tz(X) 

,~K(,) +_e < 
_-<(1+~, 2 = l + e .  

2.11. LEMMA. ff /X2 is satisfied then for each A >~ 1 there is an E > 0 such that if 

f >= 0 with f M(Af) ~> 1 then f M(f)  >~ E. 

< ! Then, defining A and B as PROOF. Choose r > 0 such that M(Ar)~(X) = 2. 

in the previous proof, we have 

1_- < f M(h f )=  fA M(hf )+ fB M(hf)-<_A'W)fa M ( f ) + l  

which shows that 

= ½a""_-< f Mff). 

2.12. LEMMA. If M satisfies A2 then LM satisfies (C) in the following uniform 

form: For each a > 0 there is a fi > 0 such that ]If + g II => II g 11 + ~ whenever 
f, g E L~ with Ilfll > '~, Jig 77--< 1. I f M  does not satisfy A2 then LM does not satisfy 

(c). 

PROOF. Assume that A2 is satisfied. Let a > 0 be given. We assume, without 

that a - < l .  Let f ,g~L*M, Ilfll>~, Ilgll~l.  First assume loss of generality, 

II g II = 1. Hence 

f f 
Find ~ > 0 from Lemma 2.11, corresponding to h = 1/a. Then f Mff)  _-> E and 

f Mq+g)~f  M(i)+f M(g)>-- 1 + E. 

Then Lemma 2.10 shows that there is a /31>0, depending only o n  E > 0  
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(consequently depending only on a) ,  such that 

M [r+g \ 1 + / 3 , )  >1" 

Hence Ill+ gl l -  -> 1 +/3,.  Note that 0</3,-<_ a -<_ 1. Let /3  = ½a/3~. We claim that 

IIf + g II e IIg II +/3 whenever  f, g E L ~, IIf II > a Jig II =< 1. In fact, if II g II < ~/2 
then 

I l l ÷  gll ~ o~ ~ I l g l l + ~ =  [[g I1+/3. 

If a /2  --< s = II g II ~ 1, then 

l f + l g  =>1+/3, 

shows that IIf + gll>= s + sfl, >-_ Jig It + ft. 
Now assume that A2 is not satisfied. Then we will show that there are two 

functions f, g E L ~ such that IIf [I = II g II-- IIf + g II = 1, which clearly violates (C). 

In fact, first find a sequence u. > 0 such that 

M(u . )>=l  and u.p(u.)> M(u. )  = n 

Then choose another sequence a.  > 0  such 

for all n = 1,2 . . . . .  

' E:=,na, ,=~. that Z n =  1 a n  = ~, 

Assuming /z(X)=> 1, let A. ,  B. be a family of pairwise disjoint sets such that 

tx (A. )= l . t (B . ) -  M(u.  ) • 

Finally let 

n = l  n=|  

Then it is clear that f Mf f )  = f M(g) = ½ and f M f f  + g) = f M(f)  + f M(g) = 1. 
Since 

M(( l+E)u . )>-_M(u . )+eu .p(u . )>( l+En)M(u . )  for each E > 0, 

we also see that f M ( ( l + E ) f ) = f M ( ( l + e ) g ) = ~  whenever E > 0 .  Hence 

[[fl[ = [[g I[ = Ilf + gH= 1. 

2.13. REMARK. I f / z (X)  = oo (but still non-atomic) then LM satisfies (C) if and 

only if M satisfies A2 in a stronger form: K = sup,>0K(r) < o0. We omit the easy 

proof. We also note that in Orlicz spaces (C) is satisfied if and only if (C) is 
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satisfied in a uniform form: For each a > 0 there is a/3 > 0 such that [[fll => a, 

Hgl]= < 1 ,  f,g >=0 implies ]]f+gll>=Hgl]+/3. This is not the case in a general 

Banach lattice, as the following example shows. Let L consist of functions 

f : [ 1 , ~ ) ~ R  with 

Ilfll = If(x)l"dx 
n = l  

It is easy to see that (C) is satisfied but not uniformly. 
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